首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83217篇
  免费   6450篇
  国内免费   6245篇
  2024年   40篇
  2023年   1024篇
  2022年   1269篇
  2021年   4395篇
  2020年   2998篇
  2019年   3637篇
  2018年   3572篇
  2017年   2589篇
  2016年   3669篇
  2015年   5456篇
  2014年   6221篇
  2013年   6753篇
  2012年   7917篇
  2011年   6969篇
  2010年   4204篇
  2009年   3835篇
  2008年   4256篇
  2007年   3816篇
  2006年   3368篇
  2005年   2757篇
  2004年   2224篇
  2003年   1882篇
  2002年   1610篇
  2001年   1356篇
  2000年   1333篇
  1999年   1236篇
  1998年   739篇
  1997年   717篇
  1996年   708篇
  1995年   667篇
  1994年   592篇
  1993年   410篇
  1992年   627篇
  1991年   478篇
  1990年   445篇
  1989年   312篇
  1988年   267篇
  1987年   260篇
  1986年   187篇
  1985年   216篇
  1984年   122篇
  1983年   127篇
  1982年   83篇
  1981年   64篇
  1980年   41篇
  1979年   63篇
  1978年   35篇
  1977年   35篇
  1974年   42篇
  1973年   39篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
52.
Myocardial contractile dysfunction in sepsis is associated with the increased morbidity and mortality. Although the underlying mechanisms of the cardiac depression have not been fully elucidated, an exaggerated inflammatory response is believed to be responsible. Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome is an intracellular platform that is involved in the maturation and release of interleukin (IL)-1β. The aim of the present study is to evaluate whether sepsis activates NLRP3 inflammasome/caspase-1/IL-1β pathway in cardiac fibroblasts (CFs) and whether this cytokine can subsequently impact the function of cardiomyocytes (cardiac fibroblast-myocyte cross-talk). We show that treatment of CFs with lipopolysaccharide (LPS) induces upregulation of NLRP3, activation of caspase-1, as well as the maturation (activation) and release of IL-1β. In addition, the genetic (small interfering ribonucleic acid [siRNA]) and pharmacological (glyburide) inhibition of the NLRP3 inflammasome in CFs can block this signaling pathway. Furthermore, the inhibition of the NLRP3 inflammasome in cardiac fibroblasts ameliorated the ability of LPS-chalenged CFs to impact cardiomyocyte function as assessed by intracellular cyclic adenosine monophosphate (cAMP) responses in cardiomyocytes. Salient features of this the NLP3 inflammasome/ caspase-1 pathway were confirmed in in vivo models of endotoxemia/sepsis. We found that inhibition of the NLRP3 inflammasome attenuated myocardial dysfunction in mice with LPS and increased the survival rate in mice with feces-induced peritonitis. Our results indicate that the activation of the NLRP3 inflammasome in cardiac fibroblasts is pivotal in the induction of myocardial dysfunction in sepsis.  相似文献   
53.
54.
55.
We have previously identified two distinct forms of putative viral assembly intermediate complexes, a detergent-resistant complex (DRC) and a detergent-sensitive complex (DSC), in human immunodeficiency virus type 1 (HIV-1)-infected CD4(+) T cells (Y. M. Lee and X. F. Yu, Virology 243:78-93, 1998). In the present study, the intracellular localization of these two viral assembly intermediate complexes was investigated by use of a newly developed method of subcellular fractionation. In wild-type HIV-1-infected H9 cells, the DRC fractionated with the soluble cytoplasmic fraction, whereas the DSC was associated with the membrane fraction. The DRC was also detected in the cytoplasmic fraction in H9 cells expressing HIV-1 Myr- mutant Gag. However, little of the unmyristylated Gag and Gag-Pol proteins was found in the membrane fraction. Furthermore, HIV-1 Gag proteins synthesized in vitro in a rabbit reticulocyte lysate system in the absence of exogenous lipid membrane were able to assemble into a viral Gag complex similar to that of the DRC identified in infected H9 cells. The density of the viral Gag complex was not altered by treatment with the nonionic detergent Triton X-100, suggesting a lack of association of this complex with endogenous lipid. Formation of the DRC was not significantly affected by mutations in assembly domains M and L of the Gag protein but was drastically inhibited by a mutation in the assembly I domain. Purified DRC could be disrupted by high-salt treatment, suggesting electrostatic interactions are important for stabilizing the DRC. The Gag precursor proteins in the DRC were more sensitive to trypsin digestion than those in the DSC. These findings suggest that HIV-1 Gag and Gag-Pol precursors assemble into DRC in the cytoplasm, a process which requires the protein-protein interaction domain (I) in NCp7; subsequently, the DRC is transported to the plasma membrane through a process mediated by the M domain of the matrix protein. It appears that during this process, a conformational change might occur in the DRC either before or after its association with the plasma membrane, and this change is followed by the detection of virus budding structure at the plasma membrane.  相似文献   
56.
57.
The fecundity reduction with aging is referred as the reproductive aging which comes earlier than that of chronological aging. Since humans have postponed their childbearing age, to prolong the reproductive age becomes urgent agenda for reproductive biologists. In the current study, we examined the potential associations of α‐ketoglutarate (α‐KG) and reproductive aging in mammals including mice, swine, and humans. There is a clear tendency of reduced α‐KG level with aging in the follicle fluids of human. To explore the mechanisms, mice were selected as the convenient animal model. It is observed that a long term of α‐KG administration preserves the ovarian function, the quality and quantity of oocytes as well as the telomere maintaining system in mice. α‐KG suppresses ATP synthase and alterations of the energy metabolism trigger the nutritional sensors to down‐regulate mTOR pathway. These events not only benefit the general aging process but also maintain ovarian function and delay the reproductive decline. Considering the safety of the α‐KG as a naturally occurring molecule in energy metabolism, its utility in reproduction of large mammals including humans deserves further investigation.  相似文献   
58.
Catalysis of ADP-ATP exchange by nucleotide exchange factors (NEFs) is central to the activity of Hsp70 molecular chaperones. Yet, the mechanism of interaction of this family of chaperones with NEFs is not well understood in the context of the sequence evolution and structural dynamics of Hsp70 ATPase domains. We studied the interactions of Hsp70 ATPase domains with four different NEFs on the basis of the evolutionary trace and co-evolution of the ATPase domain sequence, combined with elastic network modeling of the collective dynamics of the complexes. Our study reveals a subtle balance between the intrinsic (to the ATPase domain) and specific (to interactions with NEFs) mechanisms shared by the four complexes. Two classes of key residues are distinguished in the Hsp70 ATPase domain: (i) highly conserved residues, involved in nucleotide binding, which mediate, via a global hinge-bending, the ATPase domain opening irrespective of NEF binding, and (ii) not-conserved but co-evolved and highly mobile residues, engaged in specific interactions with NEFs (e.g., N57, R258, R262, E283, D285). The observed interplay between these respective intrinsic (pre-existing, structure-encoded) and specific (co-evolved, sequence-dependent) interactions provides us with insights into the allosteric dynamics and functional evolution of the modular Hsp70 ATPase domain.  相似文献   
59.
A sequence-specific genomic delivery system for the correction of chromosomal mutations was designed by incorporating two different binding domains into a single-stranded oligonucleotide. A repair domain (RD) contained the native sequence of the target region. A third strand-forming domain (TFD) was designed to form a triplex by Hoogsteen interactions. The design was based upon the premise that the RD will rapidly form a heteroduplex that is anchored synergistically by the TFD. Deoxyoligonucleotides were designed to form triplexes in the human adenosine deaminase (ADA) and p53 genes adjacent to known point mutations. Transfection of ADA-deficient human lymphocytes corrected the mutant sequence in 1-2% of cells. Neither the RD or TFD individually corrected the mutation. Transfection of p53 mutant human glioblastoma cells corrected the mutation and induced apoptosis in 7.5% of cells.  相似文献   
60.
Phenol red is widely used in cell culture as a pH indicator. Recently, it also has been reported to have estrogen-like bioactivity and be capable of promoting cell proliferation in different cell lines. However, the effect of phenol red on primary neuronal culture has never been investigated. By using patch clamp technique, we demonstrated that hippocampal pyramidal neurons cultured in neurobasal medium containing no phenol red had large depolarization-associated epileptiform bursting activities, which were rarely seen in neurons cultured in phenol red-containing medium. Further experiment data indicate that the suppressive effect of the phenol red on the abnormal epileptiform burst neuronal activities was U-shape dose related, with the most effective concentration at 28 µM. In addition, this concentration related inhibitory effect of phenol red on the epileptiform neuronal discharges was mimicked by 17-β-estradiol, an estrogen receptor agonist, and inhibited by ICI-182,780, an estrogen receptor antagonist. Our results suggest that estrogen receptor activation by phenol red in the culture medium prevents formation of abnormal, epileptiform burst activity. These studies highlight the importance of phenol red as estrogen receptor stimulator and cautions of careful use of phenol red in cell culture media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号